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The axisymmetric problem of the pressure transmission from a circular rigid punch to a linearly 

deformable foundation through a thin porous elastic layer (coating) adhering to it is studied. The 

physical and mechanical properties of the coating are described by the equations of Biot’s model, while 

the motion of the viscous compressible fluid inside the pores is governed by Darcy’s law of filtration. 

The problem is reduced to solving an integral equation of the second kind containing Fredholm’s 

operator with respect to the coordinate and Volterra’s operator with respect to time. To solve the 

problem the separation of variables algorithm is used together with asymptotic long and short time 

methods in the case of a problem with a prescribed domain of contact, and the step-by-step method is 

used when the boundary of the contact region is not specified. Analytic formulae for the basic 

characteristics of contact interaction are obtained. 

In the domain of contact between the lubricated rough surfaces of interacting bodies the gaps 
between the microprotuberances are usually filled with the lubricant. When such bodies are 
pressed together the microprotuberances undergo deformations and the lubricant is compress- 
ed, partially escaping from the ~cropores. Since these processes are localized in thin surface 
layers of the bodies in contact, it is natural to model them, for example, as elastic or rigid 
bodies with boundaries reinforced by a think porous elastic coating, the pores of which are 
filled with the lubricant. Such a coating with its physical and mechanical properties will 
simulate the processes on a rough surface. In the case of rough surfaces in contact with one 
another when there is no lubricant the idea of the approach in question was stated by 
Shtayerman [l]. A slightly different model, taking into account the presence of a lubricant, was 
proposed in [2,3]. 

l. We will first state the basic equations describing the rheological properties of porous 
elastic media in a system of cylindrical coordinates (r, qp, z) [4] 

GAu+(G+3L,)grad&-aMgrad{=0 Q.1) 

(1.2) 

Tg = 2&g + 8&h,& -C&WC), k, = (I- 2fi)Gfi-’ + a”M 

P =-CihfE+M<, &=divu, {=-djvw 

w=NJ-u), u={u,,+u,) 
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Here u and U are the displacement vectors of the points of the elastic matrix and the fluid, p is 
the hydrostatic pressure of the fluid inside the pores %y are the components of the stress tensor 
in the porous medium, E# are the components of the strain tensor in the elastic matrix (i and j 
can be equal to 1,2,3, where 1 corresponds to r, 2. to cp, and 3 to z), k is the permeability 
coefficient of the medium with porosity f, n is the coefficient of viscosity of the fluid 
component, and G, v, 01 and M are the mechanical characteristics of the porous elastic 
medium, the methods of determining and the physical meaning of which are described in [S]. 
Moreover, f 6 a C 1. 

We will consider the auxiliary problem of the action of a normal load -<J(T, #I(T) (H(t) is 
the Heaviside function) distributed over the domain Ogr <a, 06cp< 211: on the upper 
boundary of a thin layer 0~ z d h, h = hnA1el made from the porous elastic material (1.1). 
(1.2) and rigidly attached to a non~eformable foundation. We will assume that the surface 
z = h of the layer is completely permeable, while the foundation is completely impermeable. 
Then the boundary conditions of the problem have the form 

z = h:z, = -a(r, fp)H(a - r)H(t), 2, = zw 3 0 (l-3) 

the layer being free of stresses at infinity. 
To state the initial condition we will take into account the presence of air inside the pores 

(this is not taken into account in Eqs (1.1) and (1.2) of Biot’s model). Then at the initial instant 
the load is applied only to the elastic matrix, while the pores release the air that entered them 
along with the fluid. This corresponds to the actual conditions of the behaviour of coatings. 
This fact can be written as follows: 

t=0: p=o &=a&) (1.4) 

Solving the elastic problem for a thin layer of thickness A91 (the method of solution is 
similar to that presented below) with boundary conditions 

z=h: 2,= -rr(r,cp)H(a - r), z, = z,## = 0 

z = 0: ‘4, = uq, = u, = 0 

&,2,,2,(p +o (r--)-l 

we obtain 

Hence, taking (1.4) into account, we find 

t = 0: c = -@G%(r, fp) + O(h) (1.5) 

To solve the boundary-value problem (1.1)-(1.3), (1.5) we will introduce the dimensionless 
variables r=ap, z = /IX (0~ p<m, OC x d 1) and seek the unknown functions occurring in 
these equations as the following asymptotic series 

Substituting (1.6) into (l.l)-(1.3), (1.5) and conning ourselves to terms of order zero in the 
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resulting relations, we get 

(1.77) 

x = 0: 4pYb=r0=ho,,=0 W-9 
_a? = 1: @0.X - - %,X = 0, M(-c&c,, + hho) = h&(1 - p)H(t) 

r u,x = -(l - ~)~-‘h~~(l- p)H(r) 

t=0: Ac = -a&3-‘a (1.9) 

The solution of differential equations (1.7) with boundary conditions (1.8) and initial condi- 
tion (1.9) can be constructed using a Laplace-Carson transformation in time. Omitting the 
details, we state the expressions 

4; =Y(f =o, r,L =-+%*$!E), (1.10) 

for the ~rres~nding tra~fo~ for x = 1. 
We deduce from (1.6) and (1.10) that a relatively thin porous elastic layer behaves under 

compression in a similar way as a viscoelastic Fuss-Winkler foundation with an operator bed 
coefficient, the form of which can be determined by inverting the second formula in (1.10) 
(O,(r, z) is the theta f~c~on) 

and in which the displacements u, and y of the points of the layer are everywhere equal to 
zero apart from terms O(h). 

The solution for an instantaneous distributed load p, = -o(r, @S(t) (0 s I c a, 0 s cp< 2x) 
acting upon the upper boundary of the layer can be obtained by differentiating (1.11) with 
respect to t 

(1.12) 

Note that relationships analogous to (1.11) and (1.12) for the case of a plane problem have 
been found in a more complex way in [6]. 

2. We will now assume that the thin porous elastic coating is rigidly attached to a linearly 
deformable fo~dation [7] with elasticity parameters G0 and vO, the parameter I? = GG;’ being 
small. In thii case, if 

n=O(V) (5-+O*Y>O) 

then the physical and mechanical properties of the coating can, as before, be modelled by a 
system of viscoelastic springs [8]. Then the vertical displacement of the points on the upper 
boundary of the generalized combined linear foundation due to the normal load -a+, cp)b(t) 
can be represented as ri, + %,, where zi, has the form (1.12) and it, can be written as follows 171: 
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(2.1) 

R= 2+p2-2rpcos(q-\y), OSrGa, OGtp622R 

In (2.1) b is the characteristic parameter of the linearly-deformable foundation and K(u) is its 
kernel, the specific form of which is presented in [7]. Below we consider the case when 
A = ba-’ ah and 

K(u) > 0 (Ocucm) 

K(u) - KY’(u 3 =,yr > yz)* (2.2) 

K(u) - u72(24 3 ($72 s -1) 

Besides, because the relative thickness of the coating is small, here and henceforth we assume 
that all bounda~ conditions can be carried over to the surface z = 0 of the linearly deformable 
support. 

Proceeding to the study of the corresponding axisymmetric contact problem (Fig. 1) and 
evaluating the outer integral in the first formula (2.1), we arrive at the following integral 
equation for the ~known contact pressure z, = -e(r, t) 

Ph 
G o(r,r)-zlo(r,r)O, dP=Y(t)-g(r) (2.3) 

where t, is the time the boundary r = a of the contact domain is reached for an arbitrary point 
t; = a(&), with o(r., t) for t G r, when h(t) > 0, and t, = 0 if ii(t) = 0. The case Ir(t> c 0 will be 
eliminated from consideration. 

To complete the formulation of the problem under investigation we must supplement (2.3) 
and (2.4) with the quasistatic condition 

,t- /-- --, ------- 
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Fig. 1. 



Modelling the contact interaction between rough bodies in the presence of a lubricant 127 

P(t) = 2x7 porn r MP (2.5) 
0 

and the relation 

o(r,t)=O (t-3 a(t)) (2.6) 

used to find the unknown domain of contact between the punch and the combined linearly 
deformable foundation for ir(t) > 0. 

Note that for specified shape g(r) of the punch base, four basic versions of problem (2.3)- 
(2.6) may be encountered in practice [9]: (1) the functions y(t) and u(t) = a = const are specified, 
while a(r, t) and P(t) are to be found; (2) the functions P(t) and @) = a = const are given, while 
a@, t) and y(t) are to be found; (3) the rigid displacement y(t) of the punch is specified, and 
<T(T, t), P(t) and a(t) are to be determined; (4) the force P(t) is specified, and a@, t), y(t) and 
a(t) are to be found. 

3. Consider the case of a contact domain that is constant in time. In the integral equation 
(2.3) and condition (2.5) we change to the dimensionless variables 

r=ar’, p =ap’, t =fm, f = T’m (3.1) 

and introduce the notation 

q(r’,t’) = a(r,t)d, N(f) = P(t)(a%)-’ 

y'(C) = y(t)6 , g’( r’) = g(r)tc’ ) p = PA[n(l - va )I-’ (3.2) 

(below we omit the prime). We get (I is the identity operator) 

PCI-V;)q+F;q=f (0~ rb 1,0~ to Tcco) (3.3) 

N(r)=27ci~(PJ)Pdp 
0 

Let f(r, t) = y(t)- g(r) be a given continuous function, where y(r) E C(0, T) is the original 
function [lo] and g(r) E C(Q), where SJ is the circle of a unit radius. By the method of [ll] we 
construct a system of eigenfunctions (q,(r)) (i bl) and the corresponding sequence of 
eigenvalues (ai} of the operator F,’ of the form (3.5). By (2.2) and (2.4) this system is 
orthonormal and complete in the space I&Q of square integrable functions. Moreover, 
ai a 0 for all i and ai + 0 (i + -). We shall seek a solution of the integral equation (3.3) in the 
form [9] 

Substituting (3.6) into (3.3), after obvious algebra we write 

(3.6) 

(3.7) 
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Applying a Laplace-Carson integral transformation in time to Eq. (3.7) and using the 
convolution theorem [lo], we find that 

+~iexp[~~(t-z)ferfc(-~j~) 
1 

&(OS b< T*) (3,s) 

(3.9) 

(K <tiE T, Xi =+MX()L++i)-‘) 

It has been shown in (61 that (3.8) and (3.9) are well matched with one another for t E (T,, 
P). Because of this, together they furnish a solution of the integral equation (3.7) in the whole 
domain oft. 

Next, substituting (3.6) into (3.4), we determine the force 

N(t) = 2%: eiVi(t) 
i=l 

(3.10) 

applied to the punch, which produces the required foundation settling y(t). Finally, we con- 
struct the solution of the problem in accordance with (3.6) and (3.8)-(3.10). 

If the force N(r) applied to the punch is specified (N(t) E C(0, T) is the original function), the 
solution of the problem can be constructed using the known scheme [9,12]. 

In the case when, the contact domain is specified, a mathematical justification of the solutions 
found in the present section can be obtained by the scheme presented in [II]. 

4. We will now consider the case of a monotonically increasing area of contact a(t). In (2.3)- 
(2.6) we change to the dimensionless variables (3.1) and the notation (3.2) with a taken to be 
a, = a(0). Then Eq. (3.3) and formulae (2.6) and (3.4) can be transformed as follows: 

(4.1) 

(4.21 

(43) 

where the prime is again omitted in the dimensionless variables a’(f) = a(t)& and ti = t.&. 
We observe that it is very difficult to compute the exact solution of this problem. In what 

follows we shall therefore confine ourselves to constructing a simpler approximate solution. 
We will use an analogue of the step-by-step method [13]. 

We divide the time interval [0, 7’1 into M fairly small intervals, in each of which we 
appro~te the contact pressure e(r, t) and the radius a(t) of the contact domain by functions 
that are piecewise-constant in time 

t *_f btct,: dr*t) = 4v9 ‘n#_l 1, a(t) = a(t,_, ) = a,_1 

m=-i,2 ,..., M; to =O; t, =T, a~ =1 

As a result, in place of (4.1) we arrive at a sequence of elasticity problems with increasing 
areas of contact 

wo + F;fqo = YO -4 (q,,(r) = q(r,oh y. = Y@), 0 a r g 1) (4.4) 
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which increase because new rough acrostic areas filled with the lubricant are being succes- 
sively involved in the process. In other words, the contact pressure and the radii of the new 
areas of contact are successively computed using the solutions of (4.4) and (4.5) satisfying 
conditions (4.2) and (4.3) 

&J,)=O 

and obtained at the previous time steps. 

tr* a,) 

(m=O,l,...,M-1) 

(4.6) 

(4.7) 

Let Oc t <t,. We transform Eq. (4.4) as follows. To begin with we set r = 1 in it and use 
condition (4.6). Then we multiply both sides of (4.4) by 2w dr, integrate from 0 to 1, and take 
(4.7) into account with m= 0 to get 

We simplify (4.8) by replacing qo(r) by its mean value N(O)a-I. On taking quadratures, we use 
(2.4) to write 

W) 

Relations~~ (4.9) can be used to find A and ~~0) with specified settling ye, or to find y0 
when N(0) is specified. We remark that an efficient method of computing the improper 
integrals of rapidly ~illating fictions occurring in (4.9) is presented in [14]. 

After determining the necessary parameters from system (4.9) and substituting them into 
Eq. (4.4), we obtain a solution of the latter using, for example, the eige~~ctions of the 
integral operator Fi (see Section 3). The solution constructed can be checked by verifying 
conditions (4.6) and (4.7) to within the accuracy specified in practice. When the conditions are 
satisfied, we proceed to the next interval, and so on. As a result, at the mth step we have Eq, 
(4.5), the solution of which must satisfy the conditions (the analogues of (4.9) for M 2 1) 

AS above, such a problem can be solved using the eige~un~tions of p;Jc, which can be 
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Fig. 2. 

constructed by the method of [ll] taking the sequence of Legendre polynomials pj,[l-2(r&)2] 
as the basis. 

5. As an example, we present a numerical computation of the mechanical characteristics of the contact 
problem of indenting a punch of circular cross-section and a flat base into an elastic layer (Fig. 1), the 
lower side of which is rigidly fixed and the upper side of which is reinforced by a thin porous elastic 
coating. We will assume that the contact area does not change and the prescribed punch settling is 
constant in time. In the dimensionless variables (3.1) and taking the notation (3.2) into account, this 
problem reduces to the integral equation (3.3), where 

f(r.t) = y = const 

K(u)= 
2r0sh2u-4u 

u(2ruch2u+4n2 +l+tc$) 
(KG =3-4Vu) 

Next, we set v, = 0.3, A = 6, and R = 1, and we vary the parameter a, which characterizes the change of 
volume of the porous medium relative to the dilation of the elastic matrix for p= 0 (the case 01= 1 
corresponds to an incompressible fluid). 

Graphs of the distribution of the contact pressure q(r, t)r-” are shown in Fig. 2: curve 1 corresponds to 
t =0 (dry contact), curve 2 to t =- and @=O.S, and curve 3 to t= = and a=0.99. The values of N(t)f 
computed from (3.4) are equal to 1.82; 2.57; 4.55. It can be seen that the presence of the lubricant in the 
contact domain as well as its properties, in particular compressibility, have a considerable effect on the 
properties of the thin surface layer, as if they were strengthening the layer in the same way as surface 
strengthening by various techniques. 
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